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ABSTRACT

Ensemble-based Kalman filter (EBKF) algorithms are known to produce posterior ensembles whose

variance is incorrect for a variety of reasons (e.g., nonlinearity and sampling error). It is shown here that the

presence of sampling error implies that the true posterior error variance is a function of the latest observation,

as opposed to the standard EBKF, whose posterior variance is independent of observations. In addition, it is

shown that the traditional ensemble validation tool known as the ‘‘binned spread-skill’’ diagram does not

correctly identify this issue in the ensemble generation step of the EBKF, leading to an overly optimistic

impression of the relationship between posterior variance and squared error. An updated ensemble validation

tool is described that reveals the incorrect relationship between mean squared error (MSE) and ensemble

variance, and gives an unbiased evaluation of the posterior variances from EBKF algorithms. Last, a new

inflationmethod is derived that accounts for sampling error and correctly yields posterior error variances that

depend on the latest observation. The new method has very little computational overhead, does not require

access to the observations, and is simple to use in any serial or global EBKF.

1. Introduction

Inflation of the prior and/or posterior ensemble vari-

ances in ensemble-based Kalman filtering (EBKF) is

commonly used to help prevent filter divergence (e.g.,

Anderson and Anderson 1999; Zhang et al. 2004; Furrer

and Bengtsson 2007; Sacher and Bartello 2008;

Anderson 2007, 2009; Whitaker and Hamill 2012;

Menetrier and Auligne 2015). The basic idea is that a

small ensemble size leads to a biased estimate of the

posterior ensemble variance [Furrer and Bengtsson

(2007); Sacher and Bartello (2008); also section 3 of this

paper will discuss this in detail]. This bias in the variance

manifests as an ensemble whose variance is, on average,

smaller than the mean squared error (MSE) of the en-

semble mean. Hence, ‘‘inflating’’ the ensemble variance

(by multiplying it by a number greater than 1) offers a

crude way to reduce this bias in the variance and form a

more accurate ensemble; one whose ensemble variance is

closer to being equal to the MSE of the ensemble mean.

Because the amount by which the ensemble variance

is biased low is state and regionally dependent signifi-

cant research has been performed to determine adaptive

methods that will appropriately inflate when and where

this bias is greatest. We will gather this previous work

into two groups: 1) inflation methods aimed at get-

ting the variance right on average (e.g., Anderson and

Anderson 1999; Zhang et al. 2004; Furrer and Bengtsson

2007; Sacher and Bartello 2008; Whitaker and Hamill

2012; Menetrier and Auligne 2015) and 2) inflation

methods aimed at getting the variance consistent with a

Bayesian posterior (e.g., Anderson 2007, 2009). While

the distinction between these two views of the literature

is subtle, it is nevertheless important to realize that they

are distinctly different. A careful discussion of why these

two groups are different will be presented in section 2.

Here, we will simply state that we will be deriving a

method that fits into the second group by showing that a

Bayesian posterior has an observation-dependent pos-

terior variance but that the EBKF ensemble variance

does not have an observation dependence. This we will

Corresponding author address: Dr. Daniel Hodyss, Naval Re-

search Laboratory,MarineMeteorologyDivision, 7 GraceHopper

Ave., Stop 2, Monterey, CA 93943.

E-mail: daniel.hodyss@nrlmry.navy.mil

JULY 2016 HODYS S ET AL . 2667

DOI: 10.1175/MWR-D-15-0329.1

mailto:daniel.hodyss@nrlmry.navy.mil


show immediately implies a posterior inflation algo-

rithm. While other observation-dependent inflation al-

gorithms have been proposed (e.g., Anderson 2007,

2009), this manuscript will illustrate a new technique as

well as clearly frame why those past methods were

successful. We show specifically how sampling error and

non-Gaussianity affect the data assimilation problem

from the perspective of the Bayesian posterior and an

EBKF, and then illustrate why including information

from observations proves successful.

This manuscript is organized as follows. In section 2

we describe our approach to understand the issues with

the EBKF that require inflation and illustrate a new is-

sue that appears when comparing the EBKF to a

Bayesian posterior. In section 3 we discuss in detail

how a sampling error from a limited ensemble size im-

plies that the posterior error variance should be a

function of the observation. In section 4 we illustrate the

posterior inflation methods discussed in section 3 as

applied to the three-variable Lorenz equations and a

two-level primitive equation model of the atmosphere.

We have strived to render section 4 self-contained such

that readers not interested in the detailed derivations of

section 3 can apply the theory through an examination

only of section 4. Section 5 closes the manuscript with a

recapitulation of the most important results and a dis-

cussion of the application of these ideas to common

EBKF algorithms.

2. Preliminaries and approach

a. Theory

Suppose we have an observing system simulation ex-

periment (OSSE), and conduct a nature run for some

length of time, generating Ntotal 5 M3 N true states xt,

where M and N will be defined shortly. Assume that xt
is a scalar, and the state variable is observed directly at

every analysis time. We then run an Ne-member EBKF,

generating Ntotal ensemble mean analyses each with an

associated Ne-member sample ensemble variance Pa.

Construct the binned spread-skill diagram by parti-

tioning theNe-member sample ensemble variances Pa at

analysis time into N bins, sorting from smallest Pa to

greatest. In each of these bins there is an analysis cor-

responding to each of the M ensemble variances in that

bin. Calculate the MSE for the ith bin using

Si 5
1

M
�
M

j51

e2j , (2.1)

where ej 5 xt 2 xa. In practice the errors ej would be

calculated against an unassimilated set of observations

and in this case an accounting for measurement errors

must be made. In the limit as the number of bins and the

number of samples in each bin approach infinity, the

MSE is

S(P
a
)5

ð‘
2‘

e2r(e jP
a
) de , (2.2)

where r(e jPa) denotes the probability density function

(pdf) of the error conditioned on the posterior ensemble

variance. By design, the binned spread-skill diagram

(e.g., Whitaker and Loughe 1998; Wang and Bishop

2003) obtains theMSE (skill) with respect to a particular

ensemble variance (spread). Therefore, the EBKF user

is content when the MSE is a linear function of Pa [i.e.,

(2.2) is very close to a straight line with a slope of 1].

Note that we could have chosen to bin on something

other than ensemble variance. This is useful because if

we bin on a variable that is not ensemble variance we

may see how the MSE varies with respect to changes in

that variable. One particularly illuminating way to see

how MSE varies is to bin on innovations, yi 5 y2Hxf ,

where xf is the prior mean and H is the observation

operator, such that we again obtain N bins from the

sorted innovations with the quantity in the ith bin being

estimated as

Pi
y 5

1

M
�
M

j51

Pj
a , (2.3)

which after applying the same limiting procedure above

obtains

P
y
(y)5

ð‘
2‘

P
a
r(P

a
j y) dP

a
. (2.4)

In contrast to (2.1), the observations in yi are not an

independent set for verification purposes, but the actual

assimilated observations. Obviously, if we bin in this

way there can no longer be any expectation that the

result Py(y) (i.e., binned ensemble variances) should

follow a line with slope one. However, we know that

(2.4) is still supposed to be a prediction of the MSE in

each corresponding bin, that is,

S(y)5

ð‘
2‘

e2r(e j y) de . (2.5)

The quantity (2.5) defines how the average error vari-

ance of the analysis depends on the innovation. It was

shown in Hodyss (2011), Hodyss and Campbell (2013),

and Posselt et al. (2014) that a Bayesian posterior is such

that S(y)5Py(y). Therefore, an alternative ensemble

diagnostic to the binned spread-skill diagram is the
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relationship between (2.4) and (2.5) such that one may

plot (2.5) versus (2.4) and expect a one-to-one re-

lationship. We will show later in this manuscript that

even when the traditional binned spread-skill diagram

reveals a perfect one-to-one relationship between the

MSE (skill) and the ensemble variance at analysis time

(spread) that the relationship between (2.4) and (2.5)

may be completely wrong for an EBKF. The relation-

ship between (2.4) and (2.5) is not always one to one

because the ensemble generation schemes used by the

EBKF assume that the posterior ensemble should have a

variance that satisfies

P
a
5 (I2KH)P

f
, (2.6)

where K is the Kalman gain and Pf is the prior error

variance. As shown by Hodyss (2011), Hodyss and

Campbell (2013), and Posselt et al. (2014), even if we

have an infinite ensemble, a perfect model, and

therefore a perfect prior error variance, (2.6) does not

result in the correct variance for nonlinear systems with

non-Gaussian pdfs. Even in Gaussian situations, a lim-

ited ensemble size leads to sampling error, rendering

(2.6) again incorrect, in that the true posterior error

variance is a function of the latest set of observations

and (2.6) is not. We believe this paper is the first attempt

at delivering a posterior ensemble with a better re-

lationship between (2.4) and (2.5) while retaining a good

relationship between skill and spread. This will require a

correction for sampling error that we will show to be

easy to calculate, easy to use, and generally applicable to

serial and global EBKFs.

Note that (2.6) is determined by solving for the ex-

pected variance of the posterior (EVP):

P
a
5

ð‘
2‘

P
a
(y)r(y) dy , (2.7)

where Pa(y) is the variance of the posterior (VP):

P
a
(y)5

ð‘
2‘

(x2 x
K
)2r(x j y) dx , (2.8)

and r(y) is the marginal distribution of innovations

y, r(x j y) is the posterior distribution, and the analysis

in (2.8) is only an approximation to the true posterior

mean x:

x’ x
K
5 x

f
1K[y2Hx

f
] , (2.9)

where the subscript K makes clear that the Kalman es-

timate of the posterior mean is not necessarily equal to

the true posterior mean.We emphasize here that we will

compare the EVP, in (2.7), to the VP of the EBKF

estimate in (2.8) throughout this manuscript and urge

the reader to make note of this notation.

As alluded to in the introduction, we view the inflation

literature as reasonably being broken into two groups.

On the one hand, there are methods that aim to make

the variance correct on average (e.g., Anderson and

Anderson 1999; Zhang et al. 2004; Furrer and Bengtsson

2007; Sacher and Bartello 2008; Whitaker and Hamill

2012; Menetrier and Auligne 2015), which implies that

they attempt to set the ensemble variance to (2.7). We

will show in section 3 that sampling error leads to a

systematic underestimation of (2.7) and that inflation

can help to reduce this bias in the ensemble variance. On

the other hand, there are methods that attempt to give

an observation dependence to the ensemble variance

(e.g., Anderson 2007, 2009), which we interpret as

meaning that they attempt to set the ensemble variance

to (2.8) and we further interpret this as aiming to

construct a more Bayesian ensemble from an EBKF.

Note that by getting the VP ensemble to have the vari-

ance in (2.8) that one obtains (2.7) by default. However,

if one sets the VP ensemble to (2.7) the ensemble will

not properly satisfy (2.8) and this fact motivates our goal

in this paper to construct a method that tries to set the

EBKF ensemble variance to (2.8).

Because (2.9) is an approximation to the true poste-

rior mean, (2.8) differs from the VP about the true

posterior mean:

P
t
(y)5

ð‘
2‘

(x2 x)2r(x j y) dx#P
a
(y) . (2.10)

Equation (2.8) is in fact the correct VP for the errors

about the flawed state estimate delivered by an EBKF

algorithm (2.9). Equation (2.8) may be written in terms

of the true VP, Pt(y), plus the square of an observation-

dependent bias:

P
a
(y)5P

t
(y)1 (x2 x

K
)2 . (2.11)

Equation (2.11) is derived from (2.8) by adding and sub-

tracting the true posterior mean inside the squared paren-

theses. Equation (2.11) states that the VP for an EBKF

should be the true VP inflated by the observation-

dependent bias in the estimate of the posterior mean from

(2.9). Note that the state estimate xK may differ from the

true posterior mean x because of 1) non-Gaussianity of the

prior and/or observation likelihood, 2) sampling error, and

3)model error.While thismanuscript will focus on theways

that sampling error induces differences between xK and x,

we provide next an example of error introduced by non-

Gaussianity, which will prove useful in section 4 where we

study these differences in two different nonlinear models.
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b. Non-Gaussian example

Suppose we wish to estimate the state for a scalar in

the case where the prior distribution is a non-Gaussian

random variable x represented as

x5 x
f
1

ffiffiffiffiffi
P

f

2

s
(x2 2 1), (2.12)

where x is a random draw from aGaussian withN (0, 1)

such that x2 is a random variable distributed according

to the standard ‘‘chi-square’’ distribution, the prior

mean xf is equal to 1, and Pf is the true variance of the

prior. We chose a chi-square-distributed variable here

simply because it is a well-known and easily con-

structed model of a non-Gaussian process. Assume a

Gaussian observation likelihood with an observation

error variance R equal to 1. For each trial of this

experiment, a true state will be created using (2.12)

and random noise with variance R will be added to

create an observation. In addition, for each trial, the

parameter Pf will be drawn from an inverse Gamma

distribution with shape and scale (k–u) parameters

equal to 10, which results in a mean prior variance of

1.11. We draw the prior variance from a distribution

(rather than setting it to a single number) because we

require that there be a distribution of EVP values

across the trials to properly produce a binned spread-

skill diagram.

Assume also that we have access to an infinite en-

semble and simply make use of the known true variance

of the prior Pf and the known true prior mean xf in (2.9)

to estimate the state, and similarly in (2.6) to estimate

the posterior variance. Conduct 106 trials, sort the 106

EVPs we obtained from (2.6) from smallest to largest,

and constructN5 10 equally populated bins (M5 105).

Corresponding to the EVPs in each of these bins are

state estimates from (2.9) for which we apply (2.1),

where we simply validate against the known truth.

Figure 1a reveals a perfect relationship between the

EVP and the MSEs. For this simple example, we can

calculate the complete Bayesian solution (done here

using particle filtering methods) and compare (see

Fig. 1a). The Bayesian solution must also produce a

perfect relationship between the ensemble variance and

theMSEs. Because the Bayesian solution does not make

assumptions on the shape of the prior distribution while

the Kalman filter does, the Bayesian solution will gen-

erally have a lower MSE, which can be seen by noting

that the equally populated bins are generally shifted

toward smaller values of MSE.

As discussed above, we may alternatively bin by the

size of the innovations. To compare innovations

FIG. 1. Data assimilation diagnostics for a non-Gaussian prob-

lem. (a) The traditional binned spread-skill diagnostic for the

Kalman filter (blue) is shown as well as the Bayesian solution (red).

(b) The MSE (red solid) of the posterior mean and EVP (blue)

from aKalman filter binned as a function of normalized innovation.

The red dashed line is the MSE as a function of normalized in-

novation for the Bayesian posterior. The Bayesian ensemble var-

iance is identical to the MSE and cannot be seen under the red

dashed line. (c) The new binned spread-skill diagnostic for the

Kalman filter (blue) as well as the Bayesian solution (red).
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drawn from different priors (with different values of

Pf ), we need to normalize them. In Fig. 1b we nor-

malize the innovations by their standard deviation

[yN 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2/(Pf 1R)

p
], sort the results into 10 bins, and

then compute the analysis error in each bin [see (2.1)].

One can see that consistent with (2.6), the EVP is a

horizontal line, implying that it does not vary with

innovation. Equation (2.8) reveals how the MSE of

the Kalman analysis varies with innovation. Figure 1b

shows that the MSE of the Kalman estimate is in fact a

strong function of the innovation, because the prior is

non-Gaussian. It is important to realize that if the

prior were Gaussian, then the posterior MSE curve

as a function of innovation would be flat, which means

that all innovations, whether small or large, result in

the same expected squared error. This is a property of

Gaussian posteriors and explains why the Kalman

state estimate is correct for Gaussian posteriors even

when its ensemble variance does not vary with

innovation.

From Fig. 1b it is clear that the EVP does not predict

the MSE in the state estimate, as the blue curve and

the red curve are far from matching. By contrast, the

MSE and the VP for the Bayesian result are identical,

showing that the Bayesian result properly predicts the

MSE as a function of innovation. In Fig. 1c we plot

(2.5) versus (2.4). This new type of binned spread-skill

plot is constructed by taking the data from the MSE

(red curve) and the EVP (blue curve) in Fig. 1b and

plotting them against each other. In other words, we

plot a blue circle at the location (x, y)5 (EVP, MSE).

The blue circles show that the MSE is completely in-

dependent of EVP; by contrast, the Bayesian results

(red circles) fall exactly along the one-to-one line.

Figure 1a gives the impression that during the data

assimilation cycles when the EVP is large, the MSE is

large, and vice versa. However, Fig. 1b shows that the

EVP does not actually track the MSE. This is because

during each of these data assimilation cycles, there is

actually a different innovation, but the EVP does not

vary with innovation. So, if the EVPs are not predicting

the cycle-to-cycle bin-averaged MSE, then what does

Fig. 1a actually show? The traditional binned spread-

skill diagram in Fig. 1a shows that the EVP is an un-

biased estimate of the true VP, such that an average of

the VP over innovation [i.e. (2.7)] results in the correct

average (or expected) VP, but not the correct VP for

each cycle. In other words, for each of these cycles

during the evaluation period the VP is equally distrib-

uted about theEVP but in fact is rarely if ever equal to it.

Therefore, the binned spread-skill diagram in Fig. 1a

does not imply that the EVP is correctly predicting the

MSE for each cycle, or equivalently that the ensemble

variance correctly changes with the size of the actual

squared error. Indeed, Fig. 1b shows that the EVP is

usually incorrectly predicting the MSE. We emphasize

again that the Bayesian result does not suffer from this

problem and, therefore, an ensemble that is more con-

sistent with the Bayesian posterior (and therefore bet-

ter) would result from accounting for this discrepancy.

In the next section, we will illustrate how EBKFs in-

correctly predict the MSEs in the presence of sampling

error and discuss an inflation technique to address

this issue.

3. Sampling error

Furrer and Bengtsson (2007) and Sacher and Bartello

(2008) clearly describe the impact of sampling error on

the EBKF state estimates and ensemble variances from

the perspective of the EVP. Here, we extend Furrer and

Bengtsson (2007) and Sacher and Bartello (2008) by

showing that the impact of sampling error on theMSE of

the EBKF is in fact a function of the observations when

viewed from the perspective of the VP. In this way we

will see the issues discussed in the previous sections

emerge as a natural consequence of sampling error in

the prior estimates.

a. Prior

We begin by writing the formulas describing the un-

certainty in a sample estimate of the prior mean and

variance, and we emphasize here that we are not as-

suming that the prior, r(x), is necessarily Gaussian. We

imagine the particular random variable of interest is a

random draw from r(x) such that

x
i
5 x

f
1

ffiffiffiffiffi
P
f

q
«
i
, (3.1)

where xf is the true mean of r(x), Pf is the true variance

of r(x), and «i has mean zero, variance one, and «i is

distributed according to the standardized score:

«
i
5
x
i
2 x

fffiffiffiffiffi
P
f

q . (3.2)

The subscript i in (3.1) and (3.2) denote the ith random

draw from r(x) and refer to the members of our en-

semble. We emphasize here that because we are not

assuming that r(x) is necessarily Gaussian, this implies

that «i may be drawn from a non-Gaussian distribution.

Therefore, while «i has mean zero and variance one its

higher moments are arbitrary and not constrained to

satisfy the properties of a Gaussian.
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The sample mean and sample variance are

xs 5
1

N
e

�
Ne

i51

x
i
, (3.3a)

Ps 5
1

N
e
2 1

�
Ne

i51

(x
i
2 xs)2 , (3.3b)

where Ne is the number of samples (ensemble size)

drawn from r(x). We imagine that we calculate (3.3a)

and (3.3b) many times with different random draws

from r(x) in order to build statistics. We denote these

different calculations of (3.3a) and (3.3b) with the index

j and by using (3.1) in (3.3a) and (3.3b) wemay show that

x
j
s 5 x

f
1

ffiffiffiffiffi
P
f

q 1

N
e

�
Ne

i51

«
ij
, (3.4a)

P
j
s 5 a

j
P
f
, (3.4b)

a
j
5

1

N
e
2 1

2
4�Ne

i51

«2ij 2
1

N
e

 
�
Ne

i51

«
ij

!2
3
5 . (3.4c)

Hence, the statistics of the sample mean and variance de-

pend on the characteristics of the «ij. To reduce the com-

plexity of thepresentationwewillmakeuseof the following

notation for the expected value with respect to sampling:

hu
j
i5 lim

J/‘

1

J
�
J

j51

u
j
, (3.5)

where the convergence of this limit is to be understood

in the sense of probability.

As is well known the sample mean and variance defi-

nitions in (3.4a)–(3.4c) are unbiased, which implies that

their mean with respect to sampling error is the true value:

hx
j
si5 x

f
, (3.6a)

hP
j
si5P

f
, (3.6b)

where we have used the fact that haji5 1. The variance

due to sampling of the sample mean in (3.3a) is simply

the standard central limit theorem (CLT) result

h(x
j
s 2 x

f
)2i5

P
f

N
e

, (3.7)

while the variance due to sampling in the sample vari-

ance is

h(P
j
s 2P

f
)2i5 h(a

j
2 1)2iP

f
2 5

1

N
e

�
F
f
2

N
e
2 3

N
e
2 1

P
f
2

�
,

(3.8a)

where we have used the fact that

h(a
j
2 1)2i5 1

N
e

 
F
f

P2
f

2
N

e
2 3

N
e
2 1

!
, (3.8b)

and Ff is the central fourth moment of r(x). Note that if

r(x) were to be Gaussian such that Ff 5 3P2
f then (3.8a)

would reduce to the standard formula:

h(P
j
s 2P

f
)2i5 2

N
e
2 1

P2
f . (3.9)

We will use (3.7) and (3.8) below to quantify our un-

certainty in sample estimates of the mean and variance

of the prior distribution that we use in the Kalman

formula.

b. Posterior

To understand the impact of sampling error on the

ensemble Kalman filter estimate of the posterior mean

we include perturbations from sampling:

xaj 5 xsj 1
Ps

j

Ps
j 1R

(y2 xs
j ) , (3.10a)

xs
j 5 x

f
1 dmj , (3.10b)

Ps
j 5P

f
1 dyj , (3.10c)

where the perturbations dmj and dyj are the errors in the

estimate of the mean and variance, respectively, owing

to sampling and are from (3.4a) and (3.4b):

dmj 5
ffiffiffiffiffi
P
f

q 1

N
e

�
Ne

i51

«
ij
, (3.11a)

dyj 5 (a
j
2 1)P

f
. (3.11b)

Without loss of generality, we will throughout this sec-

tion not make use of an observation operator in the in-

novation as this is a scalar system and we are observing

the variable of interest. We emphasize, however, that

including the observation operator in the analysis is

trivial.

Using a Taylor-series expansion in terms of the per-

turbations dmj and dyj we may write (3.10a) as

xaj 5 x
K
1

P
a

P
f

 
dmj 1 [x

K
2 x

f
]
dyj
P
f

!
1⋯ , (3.12)

where the true Kalman mean without sampling error is

x
K
5 x

f
1

P
f

P
f
1R

(y2 x
f
) , (3.13)
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and Pa is the true EVP [(2.6)], evaluated with the true

prior variance.

We may neglect quadratic and higher terms in (3.12)

and find the variance with respect to sampling error

within our Kalman estimate about the true posterior

mean as

h(x2 xaj )
2i’ (x2 x

K
)2|fflfflfflfflfflffl{zfflfflfflfflfflffl}

Non-Gaussianity

1

"
P
a

P
f

#20B@h(dmj )2i1 [x
K
2 x

f
]2
h(dyj )2i
P2
f

1
CA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Sampling

,

(3.14)

where x is the true posterior mean and differs from the

true Kalman mean when the posterior is not Gaussian.

Note that the quantities h(dmj )2i and h(dyj )2i are known

from (3.7) and (3.8a), respectively. In the derivation of

(3.14) we have used the fact that the correlation be-

tween the sampling errors in each statistic, hdmj dyj i, can
readily be calculated by using the same techniques as

in section 3a, and is found to vanish (i.e. hdmj dyj i5 0).

Equation (3.14) shows that there are two components

of the expected squared difference between the sam-

ple mean estimate and the true posterior mean: one

owing to non-Gaussianity and the other due to

sampling error.

Equation (3.14) can be used to calculate the MSE in

our posterior mean estimate xa
j as
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(3.15)

and Pt(y) is the VP about the true posterior mean. The

MSE (S) of xa
j has three terms. The first term, Pt(y),

measures the natural variability about the true pos-

terior mean. The second term measures the inflation

of the MSE by the bias owing to the difference be-

tween the true Kalman estimate and the true posterior

mean, which is invoked in non-Gaussian situations

where the true Kalman state estimate (3.13) is not

accurate. Last, the third term is the inflation of the

MSE owing to sampling error in the Kalman filter

equation and should be noted to be a function of the

observations through xK. This third term is composed

of two separate terms: the first term is the inflation

owing to sample error in the prior mean estimate (3.7)

and the second term is the inflation owing to sampling

error in the prior variance (3.8a) used to calculate the

Kalman gain.

It is interesting to compare the result in (3.15) to the

EVP from a typical ensemble generation scheme as the

expectation is that the EVP is attempting to predict S.

We, therefore, may evaluate (2.6) using (3.10c) and the

same Taylor expansion as (3.12), but this time keeping

quadratic terms, to obtain

P s
aj ’P
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P
f
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f
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2 . (3.16)

By applying (3.5) and making use of (3.11b) we obtain
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aji’P
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j
2 1)2iP 3

a . (3.17)

Equation (3.17) shows that, except for very large EVP,

the EVP including sampling error is less than the true

EVP, which can be seen by the negative quadratic term.

As an example, note that if r(x) is Gaussian then

x5 xK and Pa(y)5Pa such that
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(3.18a)

and similarly
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. (3.18b)

Again, we hope that the EVP in (3.18b) will predict the

MSE of the ensemble mean in (3.18a) (i.e., if our en-

semble was properly constructed we would have

SG 5 hP s
aji). Note, however, that there are two obvious

ways that (3.18a) and (3.18b) are different: 1) the

second-order terms in (3.18a) and (3.18b) have opposite

signs and 2) (3.18a) is a function of the latest observation

through xK and (3.18b) is not. In section 4 we describe a

posterior inflation algorithm that attempts to account

for these two issues in the posterior ensemble generation

step of an EBKF algorithm.
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c. Gaussian example

We will illustrate the theory of section 3b using a

simple Gaussian model:

x5 x
f
1

ffiffiffiffiffi
P
f

q
x . (3.19)

Here, x is a random draw from a normal distribution

with mean 0 and variance 1, prior mean, xf is equal to 1,

and Pf is the true variance of the prior. As in the pre-

vious section, we will assume a Gaussian observation

likelihood with an observation error variance R equal to

1. Here we employ 107 trials. For each trial of this

experiment, a sample truth will be created using (3.19)

and random noise with variance R added to create an

observation. Again, for each trial, the parameter Pf will

be drawn from an inverse Gamma distribution with

shape and scale parameters equal to 10, which results

in amean prior variance of 1.11. The pdf forPf is plotted

in Fig. 2a. In contrast to the experiment in section 2, here

we use a small ensemble of Ne 5 8 members to estimate

the prior mean and variance using samples from (3.19).

The pdf of eight-member estimates of Pf from (3.3b) is

plotted in Fig. 2a. One can see that the pdf ofP s
j is wider,

indicating a larger variance, than the pdf of Pf , consis-

tent with the definition of the marginal of the sampling

distribution:

r(P s)5

ð‘
0

r(P s jP
f
)r(P

f
) dP

f
. (3.20)

In (3.20) r(Pf ) is the above-mentioned inverse Gamma

distribution and r(P s jPf ) is the conditional pdf denot-

ing the process in (3.10c). This excess variability from

sampling errors in the prior variances results in excess

variability in the EVP through calculations of (2.6),

which are also shown in Fig. 2a.

To understand a little bit more about the relationship

between the true EVP from (2.6) and its sample esti-

mates we divide our samples of the true EVP into 10

equally populated bins and plot the mean sample EVP

against the mean true EVP in Fig. 2b. Additionally, we

evaluate (3.18b) in Fig. 2b, which shows that truncating

the expansion as a cubic polynomial does an excellent

job of predicting this relationship. This, both empirically

and theoretically, confirms the well-known result that

the sample estimates of the EVP underestimates the

true EVP because the red curve and filled circles are

below the one-to-one line.

As emphasized in section 2, the EVP differs from the

true VP as is shown in Fig. 2c. Recall in section 2 that we

showed that a truly Bayesian VP, unlike the EVP, must

be equal to theMSE of the state estimate. To understand

FIG. 2. Sampling statistics for the EVP. (a) The marginal distri-

butions for the variances for the prior (dashed) and the posterior

(solid) for the true distributions (red) and the sampling distribu-

tions (blue). (b) The binned sample EVP plotted as a function of

true EVP (red closed circles). The red curve is (3.18b). (c) The

binned MSE plotted as a function of the true EVP (red closed

circles). The red curve is (3.21).
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this better we again divide our samples of the true EVP

into 10 equally populated bins and plot the MSE of the

samplemean estimate in each bin [(2.2)]. To compare this

to our estimate of theMSE in (3.18a) wemust account for

the fact that each bin is also equivalent to an average

(integration) over innovation. We do this by integrating

with respect to the marginal distribution of innovations:
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, (3.21)

and subsequently plot this curve in Fig. 2c. Note that

(3.21) provides an excellent prediction of the MSE as a

function of the true EVP Pa. As discussed in section 2,

one can see from Fig. 2c that the relationship between

MSE and the true EVP does not fall on the one-to-one

line, and, therefore, that the true EVP does not predict

the MSE of the sample posterior mean. To understand

this better, it is interesting to compare (3.21) to (3.18b).

While both (3.21) and (3.18b) are cubic polynomials in

the EVP, the second and third terms are opposite in sign

and (3.21) includes an inflation of the MSE owing to

sampling error in the prior mean (first term in brackets

in the second term on the right-hand side) and (3.18b)

does not include this term. This term is missing from

(3.18b) because (3.18b) is calculated from (2.6), which

does not know about the prior mean.

This averaging with respect to innovation in (3.21)

is unsatisfactory because it is our goal to understand

and include observation-dependent variance in-

formation in the ensemble. Hence, in Fig. 3 we pres-

ent the result of binning the MSE about the Kalman

state estimate with respect to innovation. In Fig. 3a

we plot the MSE as a function of the normalized in-

novation. As in section 2, one can see that small, nor-

malized innovations typically result in smaller posterior

MSE than large innovations. Because the prior and pos-

terior are Gaussian in this case (andGaussianity does not

lead to observation-dependent variances) we know then

that this observation-dependent error variance is a direct

result of the sampling error.

In Fig. 3a we also plot the EVP for both the eight-

member estimate as well as the true value of the EVP.

Note that both are below the MSE but that the sample

estimate is further below as was predicted by (3.18b).

The ‘‘true’’ EVP is less than the actual MSE because the

true EVP is measuring the expected error variance

about a Kalman estimate with no sampling error. Note

that while (2.6) cannot predict the MSE, (3.18a) can and

is plotted in Fig. 3a. Equation (3.18a) provides a very

good estimate of the MSE as a function of innovation

albeit it is slightly too small. This underestimation of the

MSE by (3.18a) is a direct result of the truncation of the

Taylor expansion.

Comparing the MSE of the Kalman state estimate in

Fig. 1b to that in Fig. 3a reveals a stronger degree of

curvature in the non-Gaussian example of Fig. 1b. The

sampling error theory of this section reveals that the

lowest-order impact of sampling error is that the MSE

picks up a quadratic dependency on innovation. In the

non-Gaussian example of Fig. 1b, where we remind the

reader that there was no sampling error, the strong in-

novation dependency arose from the observation-

dependent bias term in (2.5). This same term can be

seen in (3.15) and, using the theory of quadratic non-

linear regression as applied to Kalman filtering (Hodyss

2011), can be shown to lead to a quartic dependency on

the innovation. This quartic dependency arises because

the lowest-order difference between the true posterior

mean and that estimated by a Kalman filter is a qua-

dratic function of the innovation. We will see in the next

section that in the nonlinear models of that section,

where there exists both sampling error and non-

Gaussianity, the MSE is a stronger function of the in-

novation than predicted by (3.18a), which is consistent

with non-Gaussianity leading to a quartic dependency

on innovation in the MSE.

In Fig. 3b we plot our new version of the MSE as a

function of ensemble variance diagram. This new type of

binned spread-skill plot is constructed by taking the data

from theMSE (red curve) in Fig. 3a and the sample EVP

(blue curve) in Fig. 3a and plotting a line through all the

locations (x, y) 5 (EVP, MSE). Because the EVP does

not predict the MSE the blue curve is a vertical line,

which implies an inability to predict the MSE. Similarly,

we also plot in Fig. 3b the same relationship using MSE

as a function of the true EVP and this shows the same

inability to predict the MSE. Last, we plot MSE as a

function of the predicted MSE [(3.18a); black curve in

Fig. 3a] and we see a very good prediction of theMSE as

this black line is now very close to the one-to-one line.

In the next section, which provides example applica-

tions for two different nonlinear evolution equations, we

will not have available the true prior variances to cal-

culate the normalized innovations and we will not have

the true EVP and posterior mean. This will lead us to

normalize the innovations with the sample prior vari-

ances and to evaluate (3.18a) with sample estimates

rather than the true values. In Figs. 3c and 3d we show

how the results change when we improperly normalize

the innovations. The only difference between Figs. 3a,

b and 3c,d is that the normalization in Figs. 3a and 3b

used the true prior variances and the normalization in

Figs. 3c and 3d used the sample prior variances.
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Therefore, Figs. 3c and 3d show us what we need to be

aware of when applying this diagnostic to real-world

scenarios. Figure 3c shows that it will appear that the

EVP bends to smaller values for large normalized in-

novations and that the MSE has a larger dependence on

the normalized innovation than it should be when the

innovation is normalized using a sample estimate. Fur-

thermore, these new relationships will lead to additional

curvature in Fig. 3d. These features must be noted when

using these diagnostics in real-world situations as will be

illustrated next.

4. Applications

Our goal in this section is to illustrate how to apply this

theory to a state vector of arbitrary length and to discuss

how to apply the previous theory to cycling data as-

similation in nonlinear systems.

a. Lorenz-63

In this subsection we perform data assimilation us-

ing the ensemble Kalman filter (EnKF) with the en-

semble generation scheme referred to as perturbed

FIG. 3. Ensemble diagnostics as a function of normalized innovation. (a),(c) The MSE (red), sample EVP (blue),

true EVP (green), and the prediction of the MSE from (3.18a) (black) are plotted. (b),(d) The new binned spread-

skill diagnostic for MSE vs sample EVP (blue), MSE vs true EVP (green), and MSE vs the prediction of the MSE

from (3.18a) (black) are plotted. In (a),(b) the normalized innovation uses the true prior variance and prior mean. In

(c),(d) the normalized innovation uses the sample estimate of the prior variance and prior mean and (3.18a) uses

sample estimates.
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observations (Evensen 1994, 2003). The equation for the

EnKF posterior update for the ith prior ensemble

member x i
f can be written as

x i
a 5 x i

f 1P
f
HT[HP

f
HT 1R]21(y1 eio 2Hx i

f ) , (4.1)

where y are the observations and the observation op-

erator H will be chosen here to simply observe the state

variables x and z, both with an observation error vari-

ance of 0.1; eio will be a vector of length 2 consisting of

random draws from a normal distribution with mean

zero and variance equal to R. Last, Pf is the (3 3 3)

forecast error covariance matrix, which will be esti-

mated using ensemble statistics in the standard way.

We show results for three separate types of inflation:

1) We may employ a constant prior inflation, which is

simply applied by defining a matrix Z whose columns

are the prior perturbations, e if 5 x i
f 2 xf , and sub-

sequently transforming as

Z/aZ , (4.2)

where a is a tunable parameter greater than 1 and xf
is the prior mean. The resulting covariance matrix is

then used in (4.1).

2) We may employ a constant posterior inflation, which

is also applied by defining a new matrix X, whose

columns are the posterior perturbations, e ia 5 x i
a 2 xa,

and subsequently transforming as

X/bX , (4.3)

where b is a tunable parameter greater than 1 and xa
is the posterior mean. The new perturbations in (4.3)

are added to xa and then used as the posterior

ensemble.

3) Last, we may employ the posterior inflation method

of section 3 by extending (3.18a) to a vector as
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where

p
a
5

diag(XXT)

K2 1
, (4.5)

p
f
5

diag(ZZT)

K2 1
, (4.6)

d5 x
a
2 x

f
, (4.7)

and the operation ‘‘diag’’ refers to forming the diagonal

elements of amatrix into a vector. In (4.4), allmathematical

operations involving vectors are to be interpreted as

element-wise operations. Obviously, (4.4) is not strictly

correct, as we have not accounted for sampling error in

the covariance between state variables because we

simply perform the calculation in (3.18a), which ig-

nores the sampling error in the covariance for each

variable in the state vector. This approximation has

been made in order to result in a formula that may

simply be evaluated using vector manipulations and,

most importantly, is a function of the observations

without requiring access to the observations. In other

words, (4.4) only requires access to the vector differ-

ence between the analysis and the prior mean (com-

monly referred to as the ‘‘correction’’).

The parameters a and b are tunable parameters that

are required because we will now apply the theory of

section 3 to non-Gaussian distributions and because we

will evaluate (4.4) using sample statistics rather than

the true EVP. Each of these parameters is there to

account for a specific effect missing from the theory of

section 3. First, (3.15) shows that in non-Gaussian sit-

uations we need to know the quantity Pt(y)1 (x2 xK)
2,

which we do not know. As shown in Fig. 1b the MSE,

which this quantity represents, is actually smaller than

the EVP for small values of normalized innovation.

This implies that we will tune the parameter a , 1

because pa will tend to overestimate this quantity.

Note, however, that in the presence of model error it

may prove that tuning the parameter a less than 1 is

undesirable. Nevertheless, because a , 1 this will lead

to times when the inflation algorithm will in fact deflate

the ensemble variance. Second, the quadratic de-

pendency on the innovation in (4.4) will typically un-

derestimate the actual relationship between the MSE

and the ensemble variance in non-Gaussian situations

because we are not explicitly accounting for the term

(x2 xK)
2, which as discussed at the end of section 3 is

likely to be a stronger function of the innovation than

quadratic. This implies that we will tune the parameter

b . 1. We will find in the applications to be described

next that b needs to be about the same size as the en-

semble size and that this value for b is a reasonable

approach to start the tuning process. Alternatively, we

could include a quartic term, rather than simply neglect

(x2 xK)
2, following the theory of Hodyss (2011) and as

discussed at the end of section 3. This we feel is outside

the scope of the present study and will be left to

future work.

Given (4.4) we may calculate the implied inflation as

g5

ffiffiffiffiffiffi
S
G

p
a

s
, (4.8)
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where again all mathematical operations are to be in-

terpreted as element-wise. We use (4.8) in a way similar

to (4.3):

X/ g+X , (4.9)

where + represents the element-wise product.

In this section we will use the Lorenz (1963) equations

as the first nonlinear dynamical system to be studied:

dx

dt
5s(y2 x) , (4.10a)

dy

dt
5 x(r2 z)2 y , (4.10b)

dz

dt
5 xy2bz , (4.10c)

where the parameters will be (s, r, b)5 (10, 28, 8/3).

The system (4.10a)–(4.10c) will be solved using the ex-

plicit Runge–Kutta (4, 5) solver (ode45) found in recent

versions of MATLAB.

We assimilate observations for 105 cycles with a time

between observations of 0.15. If we did this with a small

ensemble and without any sort of inflation of the prior or

posterior, the EnKF described in (4.2) fails to track the

truth for the entire 105 cycles (not shown). This sort of

failure is common when using small ensemble sizes, and

motivates the application of inflation to track the truth.

Each of the above three methods are individually

tuned for minimumMSE averaged over the three state-

variables for ensemble sizes of 8, 16, and 32 members

and over the entire 105 cycles. This tuning for the con-

stant prior and posterior inflation algorithm simply re-

fers to the tuning of the a and b in (4.2) and (4.3) to

obtain the minimumMSE. For the observation-dependent

method, this required tuning a and b in (4.4) until the

minimumMSEwas found. For theNe 5 8 ensemble, which

we will discuss in detail below, the constant prior inflation

technique required a 5 1.18 and the constant posterior

inflation technique required b 5 1.2 to find the minimum

MSE. The observation-dependent method found a5 0.92

and b5 4 to obtain theminimumMSE. The resultingMSE

is shown in Fig. 4. This figure shows that the new posterior

inflation algorithm results in the minimum MSE over the

testing period for each ensemble size tested. In addition, a

comparison between constant posterior and prior inflation

does not appear to reveal a clear winner.

To understand why the new technique was superior

we plot in Fig. 5 the binned MSE and ensemble vari-

ances for the Ne 5 8 ensemble as a function of normal-

ized innovation, which we define here as

y
N
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(y2H)T[HP

f
HT 1R]21(y2H)

q
. (4.11)

We note here that the Pf used in this calculation is the

sample estimate. Recall that we saw in section 3 that

sample estimates used to normalize the innovations

should result in the MSE prediction in (4.5) to appear to

underestimate the actual MSE and that the EVP from

the EnKF should erroneously bend toward low values

for large normalized innovation (see Fig. 3c).

In Fig. 5a we show the eight-member constant prior

inflation methods MSE and ensemble variance for each

of the three variables in Lorenz-63. The curves for the

constant posterior inflation method are very similar (not

shown). Here, it is seen that theMSE is a strong function

of the normalized innovation but the ensemble variance

is not. Also, consistent with Fig. 3c the ensemble vari-

ance bends slightly to smaller values for large innovation

for the x variable. Compare this to Fig. 5b where we

show the eight-member observation-dependent poste-

rior inflation methods MSE and ensemble variance for

each of the three variables in Lorenz-63. Here, it is seen

that the ensemble variance now behaves more like the

VP as it is a function of innovation and is generally

correctly predicting the MSE. Further, note that the

largest MSE in the observation-dependent method is

substantially smaller than the largest MSE in the

constant prior method. This result also holds for the

constant posterior method (not shown). Hence, a

substantial benefit of this new posterior inflationmethod

is that the largest errors are smaller, and for those par-

ticular cycles that the ensemble does see large errors, the

FIG. 4. Average MSE for the Lorenz-63 experiments. Constant

prior (posterior) inflation as a function of ensemble size is shown in

blue (red). In green the observation-dependent inflation technique

in (4.4) is shown.
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ensemble is properly inflated to accurately predict these

large MSE values.

We feel that it is possible that the skeptical reader will

view Fig. 5 as showing that we should simply perform an

‘‘innovation check,’’ whereby we simply discard all in-

novations larger than some threshold value, to eliminate

this issue with largeMSE from large innovations. To test

this hypothesis we reran the same experiments de-

scribed above (using constant prior inflation) but this

time for every cycle we tested each individual observa-

tion for the size of its normalized innovation. When an

observation had a normalized innovation that satisfied

yN . c, (where we tuned a parameter c for minimum

posterior MSE) that observation was discarded. In all

experiments performed, this tuning procedure resulted

in the optimal c value being large enough that all in-

novations were kept. Hence, throwing out the largest

FIG. 5. Ensemble diagnostics as a function of normalized in-

novation for the eight-member ensemble. (a) The MSE (red) and

EVP (blue) for the constant prior inflation method. (b) The MSE

(red) and EVP (blue) for the observation-dependent inflation

method. In both plots the curves are associated with the x, z, and

then y variables arranged from lowest to highest, respectively.

FIG. 6. Binned spread-skill plots for the Lorenz-63 experiments

for the eight-member ensemble. (a) A traditional binned spread-

skill plot and (b) the new binned spread-skill technique are shown.

Blue closed circles represent the constant prior inflation method

and red closed circles represent the observation-dependent

method. The solid blue (red) line is the linear regression fit for the

constant prior (observation dependent) method. Dashed lines are

the confidence intervals for the linear regression fits for each

technique at 95%.
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innovations was always suboptimal. We believe this

shows that large innovations have considerable in-

formation about the way in which the data assimilation

system is performing and that these innovations should

be kept. In operational data assimilation, the common

practice of performing an innovation check is relevant

there because large innovations often imply something

systematically wrong about the observing instrument. In

our experiments, the observation statistics are precisely

correct in the sense that the characteristics of the ob-

servational instrument (i.e., it is unbiased and its vari-

ance is R) are known exactly.

In Fig. 6 we present the two versions of the binned

spread-skill plot discussed in this manuscript. In Fig. 6a

we show the traditional binned spread-skill plot for the

x variable using the eight-member ensemble and for

both the constant prior and observation-dependent

technique. The shapes of these curves for the other

variables were qualitatively similar. This shows that

both techniques do a fairly good job for EVP values

below 0.025. However, both techniques appear to

overdo the EVP for values of EVP greater than 0.025.

In Fig. 6b we show the new binned spread-skill plot for

the x variable using the eight-member ensemble and

for both the constant prior and observation-dependent

technique. This binned spread-skill plot was con-

structed by taking the data from the MSE (red curve)

and EVP (blue curve) in Fig. 5 and plotting a filled

circle at the location (x, y) 5 (EVP, MSE) in Fig. 6b.

This plot clearly shows that the constant prior inflation

technique is not properly predicting the MSE as the

scattering of data points is not aligned along the one-

to-one line. By contrast, the observation-dependent

technique has the scattering of data points more ar-

ranged along the one-to-one line revealing a better

relationship between MSE and EVP. Moreover, sta-

tistical significance testing of the linear fit through the

data reveals that the observation-dependent inflation

technique has a statistically significant relationship to

the trueMSE, while the constant prior inflationmethod

does not. This is seen in Fig. 6b, whereby the linear

regression line and its statistical significant region, do

not include the one-to-one line for the constant prior

inflation technique. The relationships shown in Fig. 6b

extend to the other variables of the Lorenz model as

well as to other ensemble sizes and to the constant

posterior inflation method.

b. Two-level primitive equations

Here we use the two-level primitive equation model

of Whitaker and Hamill (2012). This is a triangular

truncation at total wavenumber-32 (T32) spectral model

very similar to that of Lee and Held (1993), which

grossly simulates the general circulation of the atmosphere

[details are found in Whitaker and Hamill (2012) and

references therein]. The serial ensemble square root

filter algorithm of Whitaker and Hamill (2002) will be

used with a 10-member ensemble. We will assimilate 255

temperature observations (drawn from a T32 nature run)

that are nearly equally spaced around the globe (i.e., at the

Fibonacci points on the sphere) with an observation error

variance of 1K (see Fig. 7). We assimilate this observa-

tional network every 12h for 2200 cycles, discard the first

200 cycles and calculate validation statistics on the last

2000 cycles (equivalent to 1000 days).

In this subsection, we compare the posterior inflation

algorithm in (4.4) to the technique of Whitaker and

Hamill (2012) referred to as relaxation to prior spread

(RTPS):

g
RTPS

5a

ffiffiffiffiffi
p
f

p
2

ffiffiffiffiffi
p
a

pffiffiffiffiffi
p
a

p 1 1 , (4.12)

FIG. 7. Potential temperature and observing network. Shading

reveals the potential temperature field on the last day of the vali-

dation period. Filled circles show the observing network.

TABLE 1. Posterior RMSE.

Method U (lower) U (upper) V (lower) V (upper) W u

RTPS 1.1123 1.7137 1.0715 1.738 0.0737 0.457

Observation dependent 1.0836 1.6864 1.0475 1.7086 0.0732 0.449
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where all mathematical operations are to be interpreted as

element-wise, 1 is the one vector whose length is the same

as pa, and a is a tunable parameter controlling the amount

of inflation. We use (4.12) to inflate the posterior as

X/ g
RTPS

+X . (4.13)

It is important to realize that, while gRTPS knows the

type and location of any observations that went into

the calculation of pa, gRTPS does not know the value of

the observation and its distance from the prior mean.

Similarly, those posterior inflation algorithms that

aim to make the variance correct on average (e.g.,

Zhang et al. 2004; Furrer and Bengtsson 2007; Sacher

and Bartello 2008) also have this trait that they know

the type and location of any observations, but they

do not know the value of the observation and its

distance from the prior mean. Therefore, in this

subsection we will be comparing the performance of

posterior inflation methods that know the value of the

observation and its distance from the prior mean to

methods that know only the type and location of the

observation.

We tuned the RTPS method and the observation-

dependent method in (4.4) for smallest root-mean-

square error (RMSE) over the 2000-cycle validation

period. For both techniques, we tuned the locali-

zation length scale and the particular tunable pa-

rameter for that technique. We found that both

techniques minimized the RMSE with a localization

length scale of 6000 km. For the RTPS method we

found a5 0.4 produced the lowest RMSE and for the

observation-dependent method we found a 5 0.89

and b 5 10.25 produced the lowest RMSE. The

RMSE for these settings for both techniques is pre-

sented in Table 1.

In Fig. 8 we present the traditional binned spread-

skill diagram as well as the result of binning the MSE

and ensemble variance as a function of normalized in-

novation. In Fig. 8a, the binned spread-skill diagram

for potential temperature at the observation locations

reveals that both methods produce a reasonable aver-

age relationship between MSE and ensemble variance

for ensemble variances less than about 0.5. Both

methods produce far too much ensemble variance for

ensemble variances greater than about 0.5. This pat-

tern, in which the binned spread-skill diagram reveals an

overdispersive ensemble for large ensemble variances,

was also seen in the Lorenz-63 experiments for similarly

small ensemble sizes. We speculate that this curvature in

the binned spread-skill diagram for small ensemble size is

due to the relative lack of sensitivity of the Kalman gain

to sampling error when the true prior variance is

substantially larger than the observation error variance.

In this case, the sampling error that leads to a sub-

stantially larger estimate of the prior variance than the

true prior variance leads to a Kalman gain that is only a

small amount closer to one, and therefore its impact on

the state estimate is minimal. This leads to theMSE not

increasing at the same rate as the ensemble variance,

FIG. 8. Binned spread-skill diagram and MSE and ensemble

variance as a function of innovation for potential temperature.

(a) The binned spread-skill diagram for RTPS (blue) and the

observation-dependent method (red). (b) The MSE (solid) and en-

semble variance (dashed) for the RTPS (blue) and the observation-

dependent method (red).
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and hence a binned spread-skill diagram that curves to

the right.

In any event, to understand this improvement we

provide in Fig. 9 a comparison of the inflation for both

techniques and the MSE for the potential temperature

variable. In Fig. 9a the zonally averaged ensemble var-

iance and MSE is plotted. The other variables (e.g.,

zonal, meridional, and vertical wind) have very similar

properties. Here, we see that the major difference be-

tween the observation-dependent method and RTPS

occurs near 558 latitude, where the RTPS method ap-

pears to create an ensemble variance that is far too large.

In Fig. 9b we present the zonally averaged inflation for

both techniques. Here, we see why the RTPS method

has too much ensemble variance near 558 latitude as its

inflation is typically much larger than the observation-

dependent method. In Figs. 9c and 9d we present time

series of the inflation for the grid points at 1808 and 28N

and 508N, respectively. We show these time series plots

to show the difference between the methods, but also to

show that the desirable properties discussed in section

4a can be seen here. In section 4a, we noted that we

desired for the inflation to sometimes ‘‘deflate’’ the en-

semble variance, but then at other times, to inflate de-

pending on the size of the innovations. This pattern can

be clearly seen in Figs. 9c and 9d, and by comparison we

see that the RTPS method produces a relatively

smoother and more temporally correlated inflation. The

relatively noisy temporal pattern to the inflation from

the observation-dependent method does not, however,

result in a noisy spatial pattern. The spatial pattern for

the inflation for both methods can be seen in Fig. 10.

Here, we see that both methods produce a spatial pat-

tern with similar spatial scales. Note, however, that the

observation-dependent method produces a spatial pat-

tern with large regions less than 1. We tested the

FIG. 9. Diagnostics for potential temperature. (a) The time and zonally averaged MSE (solid) and ensemble

variance (dashed). (b) The time and zonally averaged inflation. (c),(d) The time series of the inflation for the grid

points at 1808 and 28N and 508N, respectively, and for the last 100 days of the validation period. In all frames, the

RTPS method is blue and the observation-dependent method is red.
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beneficial aspects of these regions by increasing the

parameter a until it was equal to 1 and reran this same

experiment. The result was a severely degraded per-

formance in all regions. This we believe shows that the

proper ‘‘deflation’’ of the posterior variances is benefi-

cial and should be included in posterior inflation algo-

rithms that attempt to produce a Bayesian ensemble.

5. Summary and conclusions

This article has sought to illustrate the differences

between the EVP [(2.1)] and the VP [(2.2)]. The reason

this is of paramount importance to ensemble gener-

ation is because a Bayesian posterior has the property

that the posterior mean squared error is equal to the

VP [(2.2)] and not the EVP [(2.1)], but all EBKF

ensemble generation methods attempt to deliver EVP

instead of VP. The critical property that leads to

differences between the VP and EVP is the fact that

the EVP is independent of observations. We showed

that there are two ways that the VP and EVP will

typically differ; non-Gaussianity in the posterior

leads to a VP that is quartic in the innovation, while

the sampling error in the prior leads through the

Kalman formula to a VP that is quadratic in the in-

novation. This observation-dependent VP led us to

introduce both an algorithm to predict this de-

pendency as well as a verification tool to measure this

dependency.

We showed in a hierarchy of models that accounting

for this discrepancy between the VP and EVP results

in a better ensemble in the sense that the posterior

ensemble mean has smaller MSE and the posterior

ensemble variance better tracks the MSE. We have

provided an algorithm in section 4 that can be applied

to state vectors of any length. The main computational

burden for the algorithm is the tuning of two param-

eters, which we would suggest performing regionally

over a training set. Last, much of the experimental

work presented here used quite small ensemble sizes

(32 members or less). We would suggest that for en-

sembles sizes larger than this, which is likely to have

little sampling error and, therefore, a much larger

contribution from non-Gaussianity, this inflation pa-

rameterization may be better replaced by a scalar

evaluation of the quadratic polynomial filter of Hodyss

(2011). This would require employing the quadratic

polynomial filter equation to predict the difference

between the true posterior mean and the true Kalman

filter mean, and using this result in the second term of

(3.15). The major issue with this suggestion is that it

would require having the observations available when

calculating the inflation factor, which substantially

increases the complexity of the algorithm from its

present form.

This research has suggested that future work un-

derstanding the relationship of the ensemble moments

from an EBKF as compared to the Bayesian solution

should provide fruitful performance improvements.

Work in this direction is under way.
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FIG. 10. (a) A snapshot of the inflation from the RTPS method

on the last day of the validation period and for the potential tem-

perature. (b) A snapshot of the inflation from the observation-

dependent method on the last day of the validation period and for

the potential temperature. Note that for both plots the color scales

are identical and white denotes values less than 1.
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